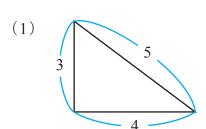

三平方の定理(3)

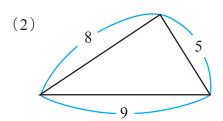
三平方の定理の逆


三角形の3辺の長さa,b,cの間に $a^2+b^2=c^2$ という関係が成り立つならば、 その三角形は**長さ c の辺を斜辺とする直角三角形**である。

直角三角形であるかどうかの調べ方

3辺の長さがわかっている三角形は、**三平方の定理の逆**を使って、直角三角形であるかどうかを 調べられる。3辺の長さをa,b,cに当てはめて $a^2+b^2=c^2$ という関係が成り立つかどうかを調べ ればよい。このとき最も長い辺をcとする。

【1】 □ をうめて,図の三角形が直角三角形であるといえるかどうかを調べなさい。

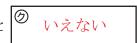


$$a^2 + b^2 = 3^2 + 4^2 =$$
 25

$$c^2 = 5^2 = 6$$
 25

したがって、 $a^2+b^2=c^2$ が成り立つので、

この三角形は直角三角形と 四 いえる



$$a^2 + b^2 = 5^2 + 8^2 =$$
 89

$$c^2 = 9^2 =$$
 81

したがって、 $a^2+b^2=c^2$ が成り立たないので、

この三角形は直角三角形と の いえない

【2】次の長さを3辺とする三角形の中で,直角三角形であるものを答えなさい。

ウ)
$$\sqrt{3}$$
 cm , $2\sqrt{2}$ cm , $\sqrt{10}$ cm $a = \sqrt{3}$, $b = 2\sqrt{2}$, $c = \sqrt{10}$ とすると , $a^2 + b^2 = (\sqrt{3})^2 + (2\sqrt{2})^2 = 11$ $c^2 = (\sqrt{10})^2 = 10$ したがって , $a^2 + b^2 = c^2$ は成り立たない。

イ)
$$1.5 \,\mathrm{cm}$$
 , $2.5 \,\mathrm{cm}$, $2 \,\mathrm{cm}$ $a=1.5$, $b=2$, $c=2.5$ とすると , $a^2+b^2=1.5^2+2^2=6.25$ $c^2=2.5^2=6.25$ したがって , $a^2+b^2=c^2$ が成り立つ。

エ)
$$\frac{13}{3}$$
 cm , 4 cm , $\frac{5}{3}$ cm $a = 4$, $b = \frac{5}{3}$, $c = \frac{13}{3}$ とすると , $a^2 + b^2 = 4^2 + \left(\frac{5}{3}\right)^2 = \frac{169}{9}$ $c^2 = \left(\frac{13}{3}\right)^2 = \frac{169}{9}$ したがって , $a^2 + b^2 = c^2$ が成り立つ。

答え ア,イ,エ

